A hierarchical network controls protein translation during murine embryonic stem cell self-renewal and differentiation.

نویسندگان

  • Prabha Sampath
  • David K Pritchard
  • Lil Pabon
  • Hans Reinecke
  • Stephen M Schwartz
  • David R Morris
  • Charles E Murry
چکیده

Stem cell differentiation involves changes in transcription, but little is known about translational control during differentiation. We comprehensively profiled gene expression during differentiation of murine embryonic stem cells (ESCs) into embryoid bodies by integrating transcriptome analysis with global assessment of ribosome loading. While protein synthesis was parsimonious during self-renewal, differentiation induced an anabolic switch, with global increases in transcript abundance, polysome content, protein synthesis, and protein content. Furthermore, 78% of transcripts showed increased ribosome loading, thereby enhancing translational efficiency. Transcripts under exclusive translational control included the transcription factor ATF5, the tumor suppressor DCC, and the beta-catenin agonist Wnt1. We show that a hierarchy of translational regulators, including mTOR, 4EBP1, and the RNA-binding proteins DAZL and GRSF1, control global and selective protein synthesis during ESC differentiation. Parsimonious translation in pluripotent state and hierarchical translational regulation during differentiation may be important quality controls for self-renewal and choice of fate in ESCs.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ZFX Controls the Self-Renewal of Human Embryonic Stem Cells

Embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) offer great promise in regenerative medicine and disease modeling due to their unlimited self-renewal and broad differentiation capacity. There is evidence that the growth properties and critical signaling pathways differ between murine and human ESCs; therefore, it is essential to perform functional studies to test the puta...

متن کامل

سلول‏های بنیادی پرتوان القایی از تولید تا کاربرد: مقاله مروری

Embryonic stem cells are pluripotent stem cells which have the ability to indefinitely self-renew and differentiate into all differentiated cells of the body. Regarding their two main properties (unlimited self-renewal and multi-lineage differentiation), these cells have various biomedical applications in basic research and cell based therapy. Because the transplantation of differentiated cells...

متن کامل

Spermatogonia stem cells: A new pluripotent source for repairment in regenerative medicine

Recently new reports have proved the pluripotency of spermatogonial stem cells (SSCs) derived from male gonad. This pluripotent stem cells resembled Embryonic stem cells recognized as Embryonic Stem like cells (ES like cells). ES like cells forms sharp edge colonies that are immunopositive to pluripotency markers and have differentiation capacity to Ectodermal, Mesodermal and Endodermal layers....

متن کامل

Zfx Controls the Self-Renewal of Embryonic and Hematopoietic Stem Cells

Stem cells (SC) exhibit a unique capacity for self-renewal in an undifferentiated state. It is unclear whether the self-renewal of pluripotent embryonic SC (ESC) and of tissue-specific adult SC such as hematopoietic SC (HSC) is controlled by common mechanisms. The deletion of transcription factor Zfx impaired the self-renewal but not the differentiation capacity of murine ESC; conversely, Zfx o...

متن کامل

Effects of Mouse Strain on Establishment of Embryonic Stem Cell Lines

Purpose: Embryonic stem (ES) cells are derived from the inner cell mass of blastocysts with self-renewal and pluripotency characteristics. These cells have potential for studies of in vitro differentiation, gene function, etc. This study was, therefore, initiated to establish new ES lines and evaluate the effects of strain on ES cell production. Materials and Methods: 3-5 day blastocysts were ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Cell stem cell

دوره 2 5  شماره 

صفحات  -

تاریخ انتشار 2008